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Abstract

The concept of a digital library is of proven worth be-
cause of its ability to provide dramatic capabilities that
are impossible with traditional print media. We are
interested in providing such capabilities for scientific,
technical and educational users of mathematical refer-
ence data. Our attention is focused on the highly spe-
cialized field of mathematics that is concerned with the
properties, application and computation of the elemen-
tary and higher mathematical functions. Calling upon
domain experts worldwide for assistance, the National
Institute of Standards and Technology is conducting an
ambitious project to construct, ab initio, a comprehen-
sive and authoritative Web resource on this subject.
The need to make effective use of the latest develop-
ments in digital library research is a major focus, as is
the development of content. In this paper we discuss
our approach to such difficulties as the representation,
display and manipulation of symbolic expressions, nu-
merical data and graphical visualizations, and we de-
scribe a prototype Web site that has been constructed
to test, evaluate and advance the NIST Digital Library
of Mathematical Functions project.

Keywords: Database, Digital Library, Document
Conversion, Mathematics, Special Functions, Visual-
ization, World Wide Web.

1. Introduction

The body of knowledge in the sciences, engineering,
and mathematics is vast and increasing at an exponen-
tial rate. By reading specialized journals and attend-
ing conferences regularly, an individual researcher can

∗This work is supported in part by the Defense Advanced
Research Projects Agency under contract DAAH 04-95-1-0595.

keep abreast of developments within a relatively nar-
row field. But when the need arises for results from
quite different fields, a researcher may have to invest
a tremendous amount of time immersed in the litera-
ture; even then, he or she may not succeed in arriv-
ing at, and assessing the reliability of, the pertinent
information. Digital library technology, coupled with
painstaking development and validation of comprehen-
sive reference data, has the potential to minimize this
general problem.

Pure and applied mathematics are the most perva-
sive disciplines in science and engineering. Mathemati-
cal definition is the key to uniform and accurate utiliza-
tion of technical knowledge. Up-to-date refinements of
fundamental mathematical techniques, such as approx-
imation of functions, solution of ordinary and partial
differential equations, and statistical analysis, provide
the underpinning for all modern quantitative science.
The increasing reliance of scientists and engineers on
mathematical modeling and simulation, the growing
use of symbolic and numerical software, and the rapidly
developing capabilities of the Internet and World Wide
Web, present challenges and opportunities for a com-
prehensive standardization of mathematical knowledge
which supports new levels of multidisciplinary commu-
nication.

The authors are part of a NIST team effort to
collect, organize, validate, develop, and disseminate
a comprehensive and evolving digital library pertain-
ing to mathematical functions. This library is be-
ing called the Digital Library of Mathematical Func-
tions, or DLMF. The reason for beginning with this
particular branch of applied mathematics, instead of,

Certain commercial software products are identified in this
paper. In no case does such identification imply recommenda-
tion or endorsement by the National Institute of Standards and
Technology, nor does it imply that the products are among the
best available for the purposes they serve.
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Figure 1. Selected yearly citations to AMS 55

(black bars) compared with total citations scaled by

0.00147 (white bars). Data from Science Citation

Index.

say, numerical analysis, is NIST’s direct experience
with the 1964 Handbook of Mathematical Functions [1],
known also as AMS 55 (for Applied Mathematics Se-
ries No. 55). This work has had unique influence among
individuals who apply mathematics to the solution of
real-world problems, e.g. engineers, physical scientists,
and statisticians. Such users have come to regard AMS
55 as the definitive source of reference information on
the “special functions” of mathematics.

AMS 55 is one of the most frequently cited works
in the scientific literature. Even though it is 40 years
out of date (never having been revised), the number
of citations to it continues to rise annually, not only
in absolute numbers but also as a fraction of the to-
tal number of citations made in the sciences and engi-
neering each year ; see Figure 1. Currently, about once
every 1 1

2 hours of each working day some author, some-
where, makes sufficient use of this handbook to list it
as a reference. Moreover, the journals in which these
references appear range widely over the sciences and
engineering; see Table 1.

The target date for completion of the public version
of the DLMF, which will be freely accessible from a
Web site at NIST, is late in 2002. A distinctive char-
acteristic, in comparison with other initiatives in digi-
tal library research and development, is the emphasis
on original development of detailed and authoritative
content; see § 2 of this paper. An equally important
thrust is the dissemination of mathematical reference
data as a digital library on the Web with provisions for
state-of-the-art indexing, searching, navigation, cross-
referencing, linking, downloading, and so on. A pro-

Table 1. Journals with highest number of citations

to AMS 55 in the 10-year period 1988–1997. Data

from Science Citation Index.

Cit. Journal

498 Phys. Rev. B: Condensed Matter Physics

462 Phys. Rev. A: Atomic, Molecular, Optical Phys.

381 Journal of Chemical Physics

262 J. Phys. A: Mathematical and General Physics

240 Phys. Rev. E: Statist. Phys., Plasmas, & Fluids

231 Journal of the Acoustical Society of America

205 Journal of Fluid Mechanics

183 Astrophysical Journal

182 Phys. Rev. D: Elementary Particles

153 J. Phys. B: Atomic, Molecular, & Optical Phys.

totype Web site with a newly written chapter on Airy
functions [7] is described, and some of the issues in-
volved in its construction are discussed in § 3. Ad-
vanced interactive graphics in two and three dimen-
sions are a valuable aid to qualitative understanding of
the properties of mathematical functions; § 4 discusses
issues associated with this topic. § 5 discusses the issue
of numerical and symbolic computation, including the
location and downloading of software; many users will
want easy-to-use support in these matters. Application
and learning modules are the subject of § 6. These are
auxiliary units tailored to the needs of fields outside
mathematics itself, with links to the DLMF Web site.
This paper concludes with a few final remarks in § 7.

2. Content Development

The first step in content development is to establish
that a genuine need exists for a new initiative in special
functions.

The citation record shows (see Figure 1) that spe-
cial functions are important in science and engineering,
and that AMS 55 is meeting this need. However, its
writing was essentially finished by 1960, and in the in-
tervening decades numerous advances in mathematical
knowledge have been made:

• New functions have entered the realm of practical
importance. One example among many is Carl-
son’s elliptic integrals which provide a unification
of a branch of special functions that had been un-
changed since its inception in the first half of the
19th century.

• New fields of application have emerged. For exam-
ple, classical special functions are used in soliton
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theory and nonlinear dynamics.

• Analytical developments have occurred, e.g. in
asymptotics and nonlinear sequence transforma-
tions.

• New properties, including integral representations,
integrals, addition formulas and generating func-
tions, have been discovered.

• Numerical developments, e.g. interval analysis,
Padé approximations, and boundary-value meth-
ods, have come into being.

• Applications of computer algebra and symbolics
have come into wide use.

• An enormous increase in computing power has ren-
dered obsolete many standard numerical processes
of the 1950’s, such as table-making and interpola-
tion, while at the same time increasing the value
of others, e.g. integration of defining differential
equations in the complex plane.

• Comprehensive software packages have been con-
structed, both commercial and non-commercial,
for generating special functions by sound numeri-
cal procedures.

• The dissemination of information has been rev-
olutionized consequent upon the introduction of
electronic publishing and computer networks.

All of these developments are important, and all need
to be accounted for in a modern compendium on special
functions.

Resources other than AMS 55 exist. How do they
relate to the DLMF project? Two handbooks of great
importance that are contemporaneous with AMS 55,
and therefore just as out-of-date, are [4, 5]. More re-
cent handbooks, such as [8–10], are much less com-
prehensive and do not meet the overall need identified
for the DLMF, which is to provide a thorough and au-
thoritative treatment of special functions as they apply
within and outside mathematics. In recent handbooks,
a strong emphasis is often placed on computation, in
some cases using numerical and programming meth-
ods of lesser overall quality compared with standard
procedures in the better-known software libraries. An-
other kind of resource is represented by current soft-
ware packages, such as Macsyma, Maple, Mathe-
matica and Matlab, that include substantial support
for special functions as well as broad support of other
useful mathematical fields. The fact that companies
expend funds in this way for special functions is an-
other indicator of their perceived importance. How-
ever, it must be stressed that these systems do not

provide a substitute for an authoritative reference com-
pendium. In fact, AMS 55 continues to serve as a source
of reference information for users of these systems, as
well as for the system developers; the DLMF will con-
tinue in serving this purpose.

The second step in content development is content
definition. Which topics should be included, and which
excluded?

Our approach here is to call upon recognized do-
main experts. An invitational workshop held at NIST
in the summer of 1997 resulted in a tentative list of 34
chapter headings. The majority treat individual func-
tion classes, such as the elementary functions (expo-
nential, hyperbolic and trigonometric functions, and
their inverses) and higher functions (Airy functions,
Bessel functions, Legendre functions, and so on); the
remainder deal with closely associated topics such as
algebraic, analytical and numerical methods. Further
refinement of the exact content to be included will re-
sult from regular meetings, augmented by email and
telephone communications, of an editorial board made
up of the four NIST editors and ten prestigious asso-
ciate editors from the U.S. and abroad.

The third step in content development is the actual
content generation, together with quality control. For
the DLMF this will consist of contracting with highly
qualified authors who will be selected by the NIST ed-
itors. The associate editors have all committed them-
selves to provide substantial assistance to the NIST
editors in this and all other important editorial deci-
sions in their respective subfields of expertise. They
will also assist in reviewing the written material sub-
mitted by the authors. After the content is put into
the DLMF Web site by NIST staff, the original au-
thors will be asked to review it, and further review will
be arranged by contracts with qualified validators who
are independent of the original authors.

The entire project requires substantial funding, and
its completion date depends on the funding rate. Ex-
ternal funding is being sought to augment committed
internal NIST funding. Under the best possible funding
scenario, completion of the DLMF project will occur in
2002. The DLMF will require a continuing low level of
funding indefinitely. NIST is committed to continuing
maintenance under the auspices of its congressionally
mandated Standard Reference Data Program.

3. Web Site

In this section, we address some of our design
goals for the DLMF Web site, and the implications
these goals have for the information architecture of the
project. We then give an overview of how we plan to
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implement that architecture, particularly, how we plan
to translate the material our authors will provide into
an appropriate internal representation which satisfies
the needs of the site.

The bulk of this section describes the plans for
the ultimate implementation of the DLMF. However,
we have experimented with many of the features de-
scribed here in a “mock up” of the eventual site
(See http://math.nist.gov/DigitalMathLib/, par-
ticularly Chapter 11 on Airy Functions[7].), which was
prototyped using a highly modified version of La-
TeX2HTML.

3.1. Design Goals and their Implications

Let us begin by considering a sampling of the kinds
of operations we wish to provide based on our experi-
ences with AMS 55 and its users.

1. Browse through information on a particular spe-
cial function.

2. Search for a particular kind of formula or infor-
mation relating to a given property of a particular
special function.

3. Find the solution of a particular differential equa-
tion, or find the closed form of a particular series
expansion.

4. Obtain detailed information about the history,
sources, derivation or bibliographic references for
a particular formula or section.

5. Cut&paste a piece of mathematical, tabular or
other text from the DLMF into an arbitrary user
application in LATEX, Fortran, Mathematica,
Postscript, or other format.

6. Print a quick reference guide of the main proper-
ties of a special function, or of definitions of all
special functions, or of any other specific property
of a user-specified selection of special functions.

The first three of these user operations primarily
concern how a user navigates the site, going from the
top of the site to some particular piece of information
within it. Such traditional tools as indices and a table
of contents are as important to this task as they ever
were — although they are not as often found on the
Web as they should be. A clearly delineated hierarchy
with non-overlapping topics at each level is essential for
generating a table of contents that a user can quickly
and confidently navigate; this requirement is too of-
ten ignored. In addition, extensive meta-information

indicating properties not only of sectional units, but
also of formulas and graphics, is needed to construct
the several multi-level indices that users might need.
This latter information is also essential in constructing
automated search tools.

Meta-information attached to each unit or formula
can provide much more than indexing capabilities.
It provides a natural mechanism to attach informa-
tion about historical developments, derivations and so
forth. This is information that would normally be hid-
den from the user. But, when a user wishes to go
deeper into a subject, that information can be collected
and presented, say, by following a hypertext link asso-
ciated with each formula. Thus, augmenting the text
with abundant meta-information helps satisfy items 4
and 5 on our list. See Figure 2 for an example of
the meta-information associated with a formula in the
mockup site.

To be able to construct quick reference guides (item
6) which collect a variety of different objects (e.g. sec-
tions or formulas) satisfying given criteria suggests a
slightly different requirement. Attributes of sections
and formulas, defined in the meta-information or im-
plied by the sectioning, must be usable in determining
the role of the object in its context. In this way, we
can automatically find, for example, definitions of all
functions in the DLMF; from these collected objects
we construct the desired virtual document. Broadly
speaking, these attributes define different views of, or
slices through, the document. Consequently, in addi-
tion to assigning the appropriate attributes to all units
and formulas, we must also take care that they are writ-
ten in such a way as to be useful outside their original
context.

Taken together, these implications require us to
carefully lay out the overt, hierarchical organization,
that is the default book-like arrangement, that DLMF
authors will need to adhere to. They also require an
internal representation based more on the semantics of
the material than merely the presentation of it; that
a unit is a subsection is less important than that the
unit deals with a particular mathematical property of
a function. They also require us to develop several
appropriate vocabularies for classifying the entities as
to their roles (e.g. definitions, addition theorems, se-
ries expansions, . . . ), thier origination (e.g. references,
derived from another formula, restrictions on applica-
bility, . . . ) and so on.

3.2. Internal Document Format: XML

Given these considerations, we find that an in-
ternal document format based on XML (eXtensi-
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Figure 2. An example of a Meta-information page.

ble Markup Language: http://www.w3c.org/XML/),
complemented by XSL (eXtensible Style Language:
http://www.w3c.org/Style/XSL/), will be the most
useful and flexible solution. The combination gives a
direct method of presentation in browsers that support
it. It also supports translation to other needed for-
mats, such as: HTMLwith MathML (Math Markup
Language: http://www.w3c.org/Math/), LATEX and
Postscript.

Additionally, we will employ the XML applica-
tion OpenMath (http://www.openmath.org/) (or
the content model of MathML) to represent the math-
ematical formulas themselves. OpenMath allows us to
represent the semantics of the mathematical formula —
what it means and not just how it looks. This aspect
is essential to enable the use of these formulas in any
other way besides looking at them. Further, Open-
Math is being developed as an interchange format for
mathematical information and reader modules are ex-
pected for many different applications such as com-
puter algebra, text formatting and graphics systems.

3.2.1. Document Structure. We do not, in this re-
port, describe a complete DTD (Document Type Def-
inition. See the XML site for more information.). We
do, however, give an overview of the main features of

the anticipated document structure. In Table 2, we
give a schematic of the structure of a chapter on a
particular special function (there will be other types
of chapter in the DLMF, with different structural re-
quirements). Sections at the lowest level shown will
typically include nested subsections and paragraphs,
as well as formulas and graphical objects.

3.2.2. Meta-Information Attributes. Every
structural unit described above, including formulas
and graphical objects, can and should be annotated
with a rich set of attributes. The following list
describes some of the main classes of annotation that
we are considering.

attribute: Names of properties satisfied by this unit.

citation: Citation of original information sources.

note: Additional commentary describing the unit.

The following would apply only to formulas.

derived from: Derivation of one formula from an-
other.

applicability: Indicates that the formula is valid only
when arguments or variables are restricted to the
specified ranges.
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Table 2. Section headings for a special function chap-

ter.

Special Function
Introduction

Overview
Notation
Definition
Graphs and Visualizations

Mathematical Properties
Differential Equations
Integral Representations
Relation to Other Functions

...
Computations

Methods of Computation
Tables
Approximations
Software

...
References

3.2.3. Database of Sectional Units. Finally, each
structural unit (including graphics and formulas) will
be entered into a database, indexed (at least) by the an-
notations described above. By this means, collections
of such document fragments matching various search
criteria can be found. Reassembling these pieces al-
lows the construction of a wide variety of quick refer-
ence guides or other distillations of material, whether
we had planned them in advance or not.

3.3. Creation of XML Documents: Transla-
tion from LATEX

There is one last complication to this grand plan,
which is the question of how to create the XML docu-
ments as described above. The chapters of the DLMF
will be written by various experts around the world.
XML is rather new, and unlikely to be familiar to
these authors. In contrast, LATEX is the lingua franca
for exchange of documents in the mathematical com-
munity; most mathematical authors are familiar with
it, and it generates beautifully typeset output. While
the markup of LATEX is more semantically oriented
than that of raw TEX, it is still primarily oriented to-
wards presentation, and this introduces ambiguities;
see §3.3.2, below.

It is conceivable that we might manually translate

the LATEX documents into the desired XML format.
However, we may anticipate a period of editing and
enhancing the information of each chapter. Since the
author may not be prepared to deal with our XML
document, we would exchange corrected versions in
LATEX format. Thus a document may have to be re-
peatedly converted from LATEX to XML; indeed, many
subtle problems with a given document (missing meta-
information, ambiguities, etc) may only be revealed by
post-processing of the XML! Consequently, we require
this translation to be highly automated; if user inter-
vention is required, we should at least be able to aug-
ment the source with declarations which would auto-
matically resolve those ambiguities on subsequent pro-
cessing.

3.3.1. Style files. For the most part, the issues in-
volving document structure and meta-information will
be easily handled by the definition of a LATEX style file
for use by the authors. Macros defining our view of the
document structure are easily defined, allowing authors
to process, print and proofread their drafts in the usual
way. On the other hand, these macros will be recog-
nized by our translation system and used to construct
the desired XML representation of the material.

Similarly, a set of macros such as

\attribute{addition_theorem}

are used to assign the various meta-information to the
containing sectional unit or formula. When processed
by LATEX, these generate indices or margin notes; they
can even be ignored if they are not being proofread.
When processed by our translation system, however,
they will be embedded in the XML output, and also ex-
tracted to construct the required indices and database
attributes.

3.3.2. Mathematical Ambiguities. The ambigui-
ties of LATEX are most apparent in the case of markup
of mathematical formulas. As two simple examples,
consider the expression f(x+y) (which would display
as f(x+y)), and \frac{df}{dx} (which would display
as df

dx ). In the first case, the juxtaposition of f and
(x+y) might represent either function application or
multiplication. In the second case, this fraction con-
struct is a common idiom for a derivative, but might
really be intended to represent the (unsimplified!) frac-
tion. Generally, human readers aware of the context of
the formula will immediately recognize the intended
interpretation. Computers often fare less well.

It is, of course, here that our translation software
will be most challenged. And given the high confidence
level we hope to achieve with the DLMF, we are not
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inclined to rely on heuristic methods of analysis. To
this end, we devise what may be more tedious, but
hopefully more reliable, methods to disambiguate the
formula.

To handle the first kind of problem, we require that
every symbol used must be declared to clarify its type
as either a variable or function; a scalar, vector or ma-
trix; real or complex; etc. Thus, if f is a function and
x + y is not, we interpret f(x+y) as a function appli-
cation; otherwise the expression represents a product.
Given these declarations, a minimal type inference sys-
tem can be expected to be sufficient for resolving these
cases.

The second kind of problem is handled simply by re-
quiring the author to say what he means; macros such
as \deriv{f}{x} are introduced to express explicitly
that a derivative is intended. Nevertheless, we still
must expend some effort to recognize expressions like
\frac{df}{dx} in the document as potentially stand-
ing for a derivative.

Ultimately, we must develop a rather complete set
of such macros to disambiguate all the notations and
usages that we expect to find in the author’s materials.
These macros would be included in the provided style
files, and authors would be encouraged to use them.
We do have the advantage, however, of not having to
deal with all of mathematics, for which the richness of
notations with multiple interpretations becomes quite
overwhelming.

4. Graphics and Visualization

A Web-based digital library offers significant advan-
tages over printed media for the presentation of infor-
mative graphics. Whereas graphical representations in
[1] were sparse and restricted to static 2D plots, in the
DLMF, dynamic 3D visualizations of complex special
functions will complement 2D and 3D still images. The
judicious use of graphics not only will help scientists
and other technical users gain a deeper understanding
of special functions, it will also assist us in making some
parts of the DLMF accessible to educators, students
and others who want a short introduction to the field.

The development of effective graphical displays in
the DLMF presents several challenges. To insure uni-
formity throughout the DLMF, we must come to a
consensus about the location, frequency, and type of
visualizations to be placed in the system; but close col-
laboration with individual authors will be required to
determine the specific needs for each chapter. A re-
liable means of computing accurate data for the vi-
sualizations must be found, and the author must de-
cide which special features of a function, such as zeros,

poles, and other singularities, should be emphasized.
At the same time, the plotting range and scaling of the
function must be determined to illustrate best those
features. Another issue is deciding the type of file for-
mats to be used, while also considering the availability
of any additional Web plug-ins that would be needed
by the user. We address some of these challenges by
examining what we have done for the chapter on Airy
functions in the prototype Web site.

4.1. Static and Dynamic Visualizations of
Special Functions

The author of the chapter on Airy functions[7] spec-
ified which Airy functions should be displayed and sug-
gested the ranges for the plots. To obtain reliable data
we used a double precision Fortran routine for the cal-
culation of Airy functions written by D.E. Amos [2].
In general, all of the authors of the DLMF should
be knowledgeable about the latest computational tech-
niques being used for the functions in their chapter and
should therefore be able to point us to the best means
for obtaining reliable data.

For both the still images and dynamic visualizations
we began by using available packages such as Matlab
and Mathematica to plot the data so that we could
examine the graphical representation and adjust the
scaling to bring out interesting features. Also, consid-
erable effort was spent determining the most informa-
tive views for the still images. The still images were
stored in GIF or Postscript format. To obtain dy-
namic visualizations, we wrote a C program to convert
the data to VRML (Virtual Reality Modeling Lan-
guage; http://www.vrml.org/) format. VRML is a
standard 3D file format for describing the geometry
and movement of a 3D virtual world. We chose VRML
because of its accessibility on the Web and its interac-
tive capabilities. Also, VRML browsers for a variety
of platforms can be freely downloaded. However, it is
not a foregone conclusion that the completed version of
the DLMF will use VRML. We have to address such
issues as whether VRML browsers will continue to be
readily available and what to do if a browser is not
available for a specific platform. We will also examine
the feasibility of using alternatives to VRML such as
Java 3D which would not require the user to down-
load a browser. Currently the user is given the option
of viewing a still 3D image if a VRML browser is not
available. Figure 3 shows a VRML display of the real
part of Airy function Ai(z). The browser controls al-
low the user to rotate the figure, zoom in and out, and
move the figure in an arbitrary direction.
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Figure 3. VRML display on CosmoPlayer.

4.2. Intersection of 3D Surfaces with Cut-
ting Planes

In addition to the standard controls that come with
the VRML browser, Figure 3 shows a panel labeled
“Cutplane control” which gives the user additional ca-
pabilities. We used VRML to create files that would
generate cutting planes through a 3D surface. By ma-
nipulating the panel controls, a user can study the
change in the intersection as a plane is moved through
a surface. Currently, the cutting planes are limited to
planes perpendicular to the X and Y coordinate axes,
but we are working on an extension to the Z direction.
Future work will extend the capability to an arbitrary
direction.

When the user clicks the X button on the Cutplane
control panel, a bounding box appears around the fig-
ure along with a cutting plane that moves perpendicu-
lar to the X axis. The user moves the plane by clicking
on the second row of buttons which operate like those
of a VCR. The plane moves in sync with the projected
intersection curve, displayed on opposite faces of the
bounding box as shown in Figure 4. The controls op-
erate similarly in the Y direction. We are working on
the addition of a slider bar to the control panel to give
the user more flexibility and make it easier to stop the
plane at desired points.

To implement the cut plane control, we used VRML
reusable components called PROTO’s. Our Cutplane
PROTO displays the plane and searches the surface

Figure 4. VRML display with X direction cutting

plane.

data to determine which points are closest to the spec-
ified plane. Linear interpolation is then used to obtain
the coordinates for the intersection. All the surfaces
we have done to date intersect the X or Y planes in
continuous curves. If the surface contains holes, then
the intersection curves will be disconnected at some lo-
cations, so we have to be careful about how we connect
the points. Such a situation is the norm for the Z di-
rection. The intersection of the Z direction plane with
the surface is the contour curve for that level which,
in general, is not a single continuous curve. Therefore,
we are testing various packages for contour plotting to
use in determining the Z direction intersection points.
In testing the effectiveness of the packages on different
machines we are finding that an acceptable speed for
the VCR controls on one machine may actually be too
fast on another. For that reason, we may decide that
the slider bar, which gives the user more control, is a
better choice.

4.3. 3D Clipping

An unexpected issue arose when some plots were
rescaled to emphasize interesting features. We found
that most of the packages we used clipped the surfaces
in an unsatisfactory manner. Some packages simply re-
set values above a certain height to the same constant,
producing the shelf effect illustrated in the plot of Airy
function |Bi′(z)| shown in the first graph in Figure 5
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Figure 5. Unclipped and clipped graphs.

and also seen in Thompson [9]. Others suppress the
plotting of points where the function value is greater
than a specified number, but this may produce plots
with jagged edges that are equally misleading.

Another problem is the extraction of the clipped
data and its translation to a format we can use. In
at least one package, we discovered that although the
clipped surface looked fine on the screen, the output of
the plotted data included the entire surface instead of
the clipped surface.

We have been unable to find a package that meets all
of our needs. Therefore, we are doing some work in de-
veloping our own techniques. We created the smoothly
clipped second graph in Figure 5 by using techniques
from the field of mesh generation. First, we selected
the height at which we wanted to clip the function,
Z = 5. We then used the Z = 5 contour curve of
the function to construct a boundary for our domain.
A boundary fitted mesh was placed on the domain as
shown in Figure 6. By computing the Airy function
only at values on the mesh we obtained the smoothly
clipped surface plot in the figure. We discovered that
clipping the figure by this technique also smooths the
shading, which is based on the height of the function
at the grid points. This is probably because the mesh
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Figure 6. Contour mesh.

lines are close to being contour curves.
Creating a boundary-fitted mesh based on contour

information about the function is an ideal solution for
many graphs, but it is clear that the mesh generation
problem can become quite complicated for more com-
plex special functions that have features such as steep
gradients, zeros, or poles. For example, a contour mesh
for the gamma function would be multiply-connected
with several holes. We may want to look at triangula-
tion techniques to handle more complicated domains,
although doing so may also affect the way we write the
cutting plane software.

5. Numerical and Symbolic Computation

The chapter on Airy functions in the prototype Web
site includes four subsections on the general subject
of Computations; see Table 2. The first, Methods of
Computation, gives a list of general approaches that
have been used to construct algorithms, with refer-
ences to the literature. The approaches identified in
this subsection are distinguished by their generality,
i.e. in principle they can be combined to achieve any
degree of precision because they start from analytical
definitions of the functions: series expansions, differen-
tial equations, integral representations, and represen-
tations in terms of other functions. Numerical con-
siderations such as convergence, accuracy and stabil-
ity are mentioned briefly. The second subsection, Ta-
bles, gives references to published numerical tabula-
tions. Such tables are of occasional use in validating
mathematical software but almost always their suit-
ability for this purpose is severely limited by their in-
adequate precision and range in comparison to the ca-
pabilities of current software. Because of the existence
of numerical software, tables are rarely used today for
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their original purpose of providing function values for
pencil-and-paper calculations by interpolation between
the tabulated entries. Therefore, the DLMF will not
include voluminous static tables, which occupied over
one-half the pages of AMS 55.

The third Computations subsection is Approxima-
tions. Here, references are given to papers that pro-
vide fixed finite-precision approximations, usually for
restricted ranges of the independent variables. These
are valuable when, as is often the case, their execu-
tion speed is fast in comparison to other methods.
They are often found at the heart of numerical sub-
routines in software libraries. The fourth subsection,
Software, is the one likely to be the most often con-
sulted by DLMF users. Here distinctions are made
among programs that have been constructed and pub-
lished by an original author; libraries that have been
produced by gathering programs and imposing uniform
conventions with respect to documentation, style and
handling of errors; and systems that provide an interac-
tive command-line interface. The subsection provides a
classification and listing of published and commercially
available software, complete with the pertinent restric-
tions on the ranges of the independent variables and the
precision of the computed results. It also provides im-
mediate access to documentation, and even to source
code, via links to GAMS (http://gams.nist.gov/)
(the Guide to Available Mathematical Software) and
Netlib (http://www.netlib.org/); see also [3].

Eventually the DLMF will include a more interac-
tive facility for computing numerical values of special
functions. This will allow a user to specify precision
and the ranges of independent variables quite arbitrar-
ily. The actual computation may take place on ded-
icated computers at NIST or, alternatively, in Java
code downloaded to the user’s local environment. A
number of research problems remain to be solved be-
fore such a facility can be put fully into place, even
for a small selected subset of mathematical functions.
The most important of these problems is the requisite
error analysis, which is very demanding analytically,
and which must be put into a computable form. This
is essential to be able to assure that the computed re-
sults are accurate to the precision specified. Neverthe-
less, a prototype facility for selected functions is under
construction that will apply within certain limits of
precision. It will have a strong likelihood (but not a
guarantee) that the precision criterion has been met.

One useful purpose for such a facility is a “software
test service for special functions;” see [6]. Another is
to support user-driven visualizations of mathematical
functions in which ranges of independent variables are
specified by the DLMF user.

The role of symbolic computation in the DLMF is
still being discussed. One possible role is to provide
a way to determine mathematical equivalence of ex-
pressions, for example when a user is searching for a
mathematical formula which he or she expresses in a
form that is different from but equivalent to a formula
that is encoded in the DLMF database.

6. Application and Educational Modules

The DLMF is envisioned not only as a basic re-
source for scientific professionals but also as a foun-
dation for innovative, discipline-specific “application
modules” that can, for example, eliminate some of the
vexing variations that occur in the use of mathematical
functions in different application areas. Some of these
variations are merely notational but most are related
to the fact that real-world applications involve phys-
ical constants, normalization conventions, and special
conditions that have no place in a purely mathematical
treatment. Since mathematical functions are intrinsic
in so many different fields, no attempt can be made to
cover all fields within the DLMF project. Thus the
DLMF will contain only a very restricted set of illus-
trative examples that have a connection to an applica-
tion area in chapters where it is appropriate. However,
one of the outstanding benefits of a richly interactive
and interlinked Web site is the opportunity it presents
to construct associated Web sites that are tailored to
specific application areas and discuss them in substan-
tial detail. We expect that the DLMF will serve as the
repository of core mathematical information for such
Web sites. The DLMF project intends to provide two
such application modules, in quantum mechanics and
electomagnetic theory, as prototypes for others to con-
sider.

The DLMF provides an opportunity to construct
educational modules in exactly the same way, and a
prototype in this field is being developed also. It will
focus on mathematical functions that are introduced in
high school, elaborated in university, and used in vir-
tually all engineering and scientific applications. We
expect that it will quickly become popular as an inno-
vative learning resource for well-motivated high-school
students, university students and technological profes-
sionals. It will provide an on-line tutorial with the
ability to (i) search for and retrieve formulas and other
information from the DLMF, (ii) generate computa-
tional results on demand, (iii) generate user-controlled
graphics and visualizations on demand, (iv) check the
correctness of exercises completed by the student, and
(v) follow links to related Web sites.
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7. Concluding Remarks

It is a truism that our world is becoming increas-
ingly mathematized. This has been going on for at
least two centuries, and the pace is accelerating. Spe-
cial functions is a vital branch of mathematics that
has deep and far-reaching impact in science and tech-
nology. And it is not only the scientific world that is
mathematized. Advanced mathematical techniques are
central also in economics, finance, scheduling, commu-
nications, risk assessment, . . . ; the list is very long.

Non-mathematicians who are faced with on-the-job
mathematical demands need ready access to reliable
mathematical information that ranges across a spec-
trum from critically evaluated reference data, through
scholarly synopses, to introductory tutorials. The
eventual DLMF Web site will meet needs across this
spectrum, and in a highly usable form. This is a natu-
ral application area for a digital library, with its abil-
ity to provide scientists, technicians and students with
powerful interactive tools.
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[4] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G.
Tricomi. Higher Transcendental Functions, volume 1.
McGraw-Hill, New York, 1953. Volumes 2 (1953)
and 3 (1955) printed by same publisher. All volumes
reprinted in 1981 by Krieger Publishing Company,
Melbourne, Florida.

[5] E. Jahnke, F. Emde, and F. Lösch. Tables of Higher
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